If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+28x-189=0
a = 3; b = 28; c = -189;
Δ = b2-4ac
Δ = 282-4·3·(-189)
Δ = 3052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3052}=\sqrt{4*763}=\sqrt{4}*\sqrt{763}=2\sqrt{763}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{763}}{2*3}=\frac{-28-2\sqrt{763}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{763}}{2*3}=\frac{-28+2\sqrt{763}}{6} $
| -3(n-3)=-4n | | 3x^2+28-189=0 | | 35=-7f | | 5m2=25m+120 | | 3y+4-y=7+y+10 | | n2+2=3n | | 3(3x+4)=8(2x–2) | | (1)/(3)(x-6)=x+8 | | 5(x-2)+(-9)=-7(1-x | | 17x+2x^2=55 | | 14-7z=-13-7z | | 7u^2-8u-3=0 | | 2n2+24=14n | | (2v–1)(2v+1)=0 | | 9x^2-49/3x-7=4 | | 4(18a-7+40=3(4+24a) | | 8p−7p=13 | | 4(5x+3)=-5(2x-5)+2x | | 2y-3=3y-1 | | 5^x+6=25^x | | b^2+42=-13b | | 17+5x=3x+20 | | 2-5x=-53 | | 1/4t=75 | | 6y=2- | | 3a+9=-4a | | 0.3(x+3)-0.5(x+3)=0.2x-0.6 | | (180-(8x-311)-(x+3))+(4x-68)=180 | | 3(2x+1)=-4(2x-2) | | (4k+4)(2k+4)=0 | | ,5(f+2)=9+5f | | 6+8p=40 |